

CRYSTALLINE MIRROR SOLUTIONS

Redefining precision laser optics.

www.crystallinemirrors.com | info@crystallinemirrors.com VIENNA | CALIFORNIA | ZURICH

CRYSTALLINE MIRROR SOLUTIONS

Ultralow-loss and ultrastable coatings **10× lower Brownian noise**

Center wavelength 900 – 2000 nm Optical absorption < 1 ppm

Optical scatter < 5 ppm

Radius of curvature > 10 cm

Other specifications

Optical transmission	Tunable, per customer request
Reflectivity	Typically > 99.99 %, with > 99.999 % achievable
Loss angle	< 4 × 10 ⁻⁵ at 300 K, < 5 × 10 ⁻⁶ at 10 K
Coating material	Single-crystal GaAs/AlGaAs
Substrate material	Typically fused silica, other materials available
Temperature range	Cryogenic, room temperature, and high temperature solutions available
Substrate diameter	0.5 - 1 inch (12.7 - 25.4 mm), other sizes available
Surface quality	1 Å RMS micro-roughness
Durability	Similar to fused silica, cleaning instructions provided on request

Select scientific publications

G. D. Cole, et. al. "High-performance near- and mid-infrared crystalline coatings," Optica, 3, 647-656, 2016.

K. U. Schreiber, et. al. "Sensing Earth rotation with a helium-neon ring laser operating at 1.15 µm," Optics Letters, 40, 1705-1708, 2015.

G. D. Cole, et. al. "Tenfold reduction of Brownian noise in high-reflectivity optical coatings," Nature Photonics, 7, 644-650, 2013.

Ultralow-loss single-crystal coatings **10×** lower mid-infrared absorption

Center wavelength 2 – 5+ µm

Optical losses < 10 ppm (scatter + absorption)

Bandwidth 200 - 400 nm FWHM

Other specifications

Optical transmission	Tunable, per customer request
Coating material	Single-crystal GaAs/AlGaAs
Substrate material	Typically silicon, other materials possible
Substrate diameter	0.5 – 1 inch (12.7 – 25.4 mm), other sizes available
Radius of curvature	> 10 cm
Surface quality	< 5 Å RMS micro-roughness
Durability	Similar to fused silica, cleaning instructions provided on request

Select scientific publications

B. J. Bjork, et. al. "Direct frequency comb measurement of OD + CO → DOCO kinetics," Science, 354, 444-448, 2016.
G. D. Cole, et. al. "High-performance near- and mid-infrared crystalline coatings," Optica, 3, 647-656, 2016.

Thermally optimized optics **30× lower thermal resistivity**

Semiconductor films bonded to high thermal conductivity substrates

Center wavelength 900-5000 nm

Optical losses < 5 ppm (scatter + absorption)

Coating thermal conductivity > 30 Wm⁻¹K⁻¹

Other specifications

Optical transmission	Tunable, per customer request
Coating area	Substrate dependent, mm-to-cm size scale possible
Coating material	Single-crystal GaAs/AlGaAs
Substrate material	SiC, diamond, or other materials possible
Surface flatness	<0.10 wave P-V measured @ 633 nm
Radius of curvature	>0.1 m
Surface quality	<5 Å RMS micro-roughness
Durability	Similar to fused silica, cleaning instructions provided on request

Select scientific publications

Z. Yang, et. al. "16 W DBR-free membrane semiconductor disk laser with dual-SiC-heatspreader," Electron. Lett., **54**, 430-432, 2018. A. Diebold, et. al. "Optimized SESAMs for kilowatt-level ultrafast lasers," Opt. Express, **24**, 10512-10526, 2016.

* Xtal custom *

Fully customizable solutions for direct-bonded components

Using our proprietary direct bonding technology, CMS offers custom services for the heterogeneous integration of any number of disparate material systems. With this interlayer- and stress-free process, we can fuse a wide variety of materials in the form of bulk components, wafers, or chips.

Example materials

Fused silica, Si, GaAs, Sapphire, SiC, Diamond, YAG, YVO4, Ti:Sapphire, etc.

Surface quality requirements Micro-roughness < 1 nm; bow/warp < 10 μm;

P-V height variation < 100 nm

Size <5 mm → 200 mm

Thickness >1µm ─── 30 mm

Radius of Curvature Thickness dependent, ≥1 cm

Select Examples

• Semiconductor active regions on SiC and diamond for thermally-optimized saturable absorbers and high-power emitters

- Electrically-conductive interface layers between single-crystal semiconductors
- Laser disks directly bonded to polished heat sink materials
- Buried dielectric layers between single-crystal materials and thin films
- Integration of non-lattice-matched semiconductor heterostructures
- Semiconductor films on "soft" materials
- Joining dielectric and semiconductor layers for silicon and integrated photonics
- Simplify manufacturing by eliminating film stress

Please contact us to discuss a solution to your specific requirements.